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Abstract

The interaction between a converging cylindrical shock and double density interfaces in the presence of a saddle magnetic field is
numerically investigated within the framework of ideal magnetohydrodynamics. Three fluids of differing densities are initially separated by the
two perturbed cylindrical interfaces. The initial incident converging shock is generated from a Riemann problem upstream of the first interface.
The effect of the magnetic field on the instabilities is studied through varying the field strength. It shows that the Richtmyer-Meshkov and
Rayleigh-Taylor instabilities are mitigated by the field, however, the extent of the suppression varies on the interface which leads to non-
axisymmetric growth of the perturbations. The degree of asymmetry of the interfacial growth rate is increased when the seed field strength
is increased.
© 2018 Science and Technology Information Center, China Academy of Engineering Physics. Publishing services by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Richtmyer-Meshkov instability (RMI) refers to the
instability of an interface between two fluids that is impulsively
accelerated, usually by a shock wave [1,2]. It occurs over wide
ranges of length and time scales in technological applications
and natural phenomena, such as supernova [3], combustion [4],
hypersonic air breathing engines [5] and inertial confinement
fusion (ICF), a promising approach for fusion energy generation
[6]. In ICF, a small target filled with deuterium-tritium fuel
mixture is heated by high-power lasers that drive an imploding
shock into the target, compressing the fuel to a hotspot of

sufficiently high temperature and pressure to initiate fusion
reactions. In this high temperature and high energy-density
scenario, the materials are expected to be in the plasma state,
and thus may be influenced by a magnetic field. ICF experi-
ments conducted on the Omega Laser showed that an external
strongmagnetic field might enhance the implosion performance
by increasing the hotspot ion temperature and neutron yield
[7,8]. A two dimensional radiation-hydrodynamics numerical
investigation found that the temperature and pressure of hot-
spots for ignition decreased under the influence of a strong
magnetic field; it also found that the field might suppress the
growth of hydrodynamic (HD) instabilities [9], such as the RMI
and Rayleigh-Taylor instability (RTI) [10,11]. The rapid growth
of these instabilities on the target surfacewas responsible for the
reduction of the energy production by breaking the spherical
symmetry of the flow and severely degrading the final
compression of the target [6].
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In this investigation, we mainly focus on the evolution of
RMI in converging flows under an external magnetic field
within the framework of single-fluid magnetohydrodynamics
(MHD), a fluid description of plasma dynamics. In planar
geometry, the effects of an initial seed magnetic field on the
RMI has been explored extensively. Samtaney [12] numeri-
cally studied the interaction between shock and inclined
density interface in MHD, and found that the RMI was sup-
pressed in the presence of a magnetic field. Wheatley et al.
[13,14] investigated the case of the magnetic field perpen-
dicular to the interface and showed that the mechanism of the
suppression was attributed to the transport of the baroclinic
voricity by MHD waves away from the density interface. For
the case where the magnetic field was parallel [15] and oblique
[16] to the interface, the RMI was also suppressed by the field.
Samtaney [17] performed linear simulations of the RMI of
double-interfaces in the presence of the magnetic field and
showed that the growth rate of both interfaces decayed and
oscillated around zero. In converging geometries, Bakhsh et al.
[18,19] examined the evolution of instabilities via linear
simulations in cylindrical geometry in the presence of normal
and azimuthal fields and observed a transition from the early
RMI phase to the RTI dominated phase (the distinction be-
tween RMI and RTI was most clearly seen in hydrodynamic
cases). In addition, a significant suppression of the instability
by a sufficiently strong magnetic field was observed. Mostert
et al. [20] investigated the MHD RMI under the influence of
two seed magnetic field configurations (uniform field and
saddle field) in cylindrical and spherical converging flows. It
showed that the extent of RMI suppression was not strongly
dependent on field configuration, but that the saddle field
resulted in a lower degree of implosion distortion or asym-
metry. These prior nonlinear single fluid MHD investigations
of the converging RMI culminated in a proposed octahedrally
symmetric magnetic field configuration in 3D simulations
[21]. The octahedrally symmetric field suppresses the insta-
bility comparably to the other previously considered seed field
configurations for light-heavy interface accelerations while
results in a higher degree of symmetry of the underlying flow
even at high field strengths. These results reveal that the
applied field of higher symmetry degree helps maintain the
symmetry of imploding flow of single interface, which is very
possibly for double interfaces.

In this work, we continue the thread of these previous in-
vestigations in 2D and hence exclude the investigation of
octahedral 3D fields. In our work, motivated by the presence of
multiple density interfaces in ICF, we numerically investigate
the RMI when a converging cylindrical shock interacts with two
interfaces separating fluids of three different densities (referred
to as a double density layer) in the presence of a saddle-topology
seed magnetic field. The nonlinear interactions present in the
double density layer are significantly more complex than that
for a single density interface, and there is nonlinear coupling
between the two interfaces. We believe it is important to
determine whether the presence of a seed magnetic field still
effectively suppresses the interfacial growth and how the
essential physical suppression mechanism, vorticity transport

via MHD waves, is influenced by the double density layer. It's
worth mentioning that Mikaelian [22,23] has linearly investi-
gated RTI and RMI in stratified cylindrical and spherical
concentric shells with incompressible hydrodynamic models.
For double interface case, he noted that perturbations fed
through from one interface to another when the shell was thin in
the early stages of its evolution, while the coupling between
interfaces decreased as the implosion thickened the shell,
causing perturbations at each surface to grow independently.We
observe the feedthrough phenomenon in the early stages when
the shell is very thin, however we haven't observed the shell
thickening by implosions. This difference may due to nonlinear
effects which were not considered in Mikaelian's model.
Wheatley et al. [13,15] developed analytical MHD incom-
pressible models in Cartesian geometry for impulsively accel-
erated interfaces. Incompressible models for RMI/RTI in
converging geometry with double interfaces in MHD entail
several technical difficulties and are outside the main scope of
this paper. The remainder of this paper is organized as follows:
In Section 2,MHD equations and initial setup of the problem are
introduced, along with a brief description of the numerical
method. In Section 3, simulation results and their interpretation
are presented. Conclusions are presented in Section 4.

2. Problem description and numerical method

2.1. Physical setup

The initial physical setup of the problem is shown in Fig. 1:
two density interfaces (DI1 & DI2) centered at the origin with
mean radii r1 ¼ 1.0 and r2 ¼ 0.5, respectively, are perturbed
with a single-mode of azimuthal wavenumber k ¼ 32, and an
amplitude equal to 4% of their wavelength l. The perturbed
interface radii zi for DI1 and DI2 are given as,

Magnetic field lines
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Fig. 1. Initial setup of the density interfaces (DI1 and DI2) and the Riemann

interface (RI) that drives the converging shock. The contours of the initial seed

saddle magnetic field are superimposed.
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ziðfÞ ¼ ri � hicosðkfÞ; hi ¼
li

25
¼ 2pri

25k
; i¼ 1;2 ð1Þ

where we define f ¼ arctan y/x and consider the domain
0 < f < p/2. Solution symmetry is imposed along f ¼ 0 and
f ¼ p/2. A cylindrical driven shock results from a Riemann
problem initialized across a Riemann interface (RI) located
radially upstream at radius rb ¼ 1.5. The region r < rb is
separated into three sub-domains by the two DIs. The initially
quiescent states in each sub-domain are initialized as pI ¼ p0,
rI ¼ 3r0; pII ¼ p0, rII ¼ 5r0 (case A) or 2r0 (case B) and
pIII ¼ p0, rIII ¼ r0, respectively. Thus, for Case A, DI1 is a
light-to-heavy interface (the incident shock propagates from
the light fluid to the heavy) and DI2 is a heavy-to-light
interface, while for Case B, both DI1 and DI2 are light-to-
heavy interfaces. The state outside the RI is set as
pb ¼ 12.1p0, rb ¼ 3r0. This Riemann problem leads to a
primary converging shock of initial acoustic Mach number
M ¼ 2 at f ¼ 0. To investigate the influence of thickness d12 of
region II on the flow, r2 is varied to be 0.5, 0.8 and 0.9, cor-
responding to the cases where thickness d12 z 2.5l1, l1 and
0.5l1.

A saddle-topology seed magnetic field is applied initially,
expressed as [20],

Bðx;yÞ¼
X4

i¼1

�
aiB0

ðx�xiÞ2þðy�yiÞ2
��ðy�yiÞbexþðx�xiÞbey �

�
;

ð2Þ

with ai ¼ f þ a0;�a0;þa0;�a0g a signed scaling parameter
that sets jBðrÞj ¼ B0 at r ¼ r1, and (xi,yi) ¼ {(5,5),(�5,5),
(�5,�5),(5,�5)}. The nondimensional parameter
b0 ¼ 2p0=B

2
0 is used to describe the strength of the initial seed

field. For both Case A and Case B, the effect of the field
strength is discussed by varying b0 to be ∞, 32 and 8, where
b0 ¼ ∞ denotes the hydrodynamic (HD) case. For simplicity,
all cases are described by the abbreviations outlined in
Table 1.

2.2. Numerical method

Following several of the previous investigations (e.g. Refs.
[15,21]), we employ the ideal MHD model for this study. The
dimensionless variables are defined as:

bx ¼ x

L0

; bt ¼ t

L0

. ffiffiffiffiffiffiffiffiffiffiffi
p0=r0

p ; br ¼ r

r0
; bp ¼ p

p0
;

bu ¼ uffiffiffiffiffiffiffiffiffiffiffi
p0=r0

p ; bB ¼ Bffiffiffiffiffiffiffiffiffi
m0p0

p ;

ð3Þ

where r, p, u and B are the density, pressure, velocity and
magnetic field, respectively; and m0 is the permeability of free
space. Neglecting the effect of body forces and dissipation, the
nondimensionalized ideal MHD equations with above nota-
tions can be written as follows [24], with the carets omitted for
simplicity,

vr

vt
þV$ðruÞ ¼ 0; ð4Þ

r

�
vu

vt
þ u$Vu

�
þVp� ðV�BÞ �B¼ 0; ð5Þ

vp

vt
þ u$Vpþ gpV$u¼ 0; ð6Þ

vB

vt
�V� ðu�BÞ ¼ 0; ð7Þ

where the specific heat ratio is fixed as g ¼ 5/3 throughout this
study. In addition, we have divergence free constraint of the
magnetic field, i.e.,

V$B¼ 0: ð8Þ
Because of the discretization errors, V,B can be non-zero

and may increase with time leading to unphysical results
[25]. Thus, this constraint should be numerically satisfied all
the time during the simulation. A second-order nonlinear
compressible finite volume code developed by Samtaney [26]
is applied to solve the ideal MHD equations expressed in
strong conservation form, using an unsplit upwinding scheme
with a Roe flux solver. A projection method is used to enforce
the divergence free constraint of the magnetic field [25]. In
addition, our code has adaptive mesh refinement capability
using the Chombo framework [27]. From symmetry consid-
erations, the computation is performed on a quarter-domain,
for 0 < x,y < 2 . All the simulations use a coarsest mesh at
resolution 2562 with two levels of refinement, with the
refinement ratio of 4 in each direction for an effective reso-
lution of 40962. The criterion for refinement, based on the
local density gradient, is jVrj> 0:02r. This mesh is suffi-
ciently refined to resolve the perturbation amplitude according
to the study by Mostert et al. [20]. Hence we omit details of
other convergence tests here.

Table 1

Cases investigated parametrized according to field strength b0, thickness d12
and density ratios. An abbreviation prefixed with “A” is for Case A and “B” is

for Case B. The following character being “L” is for case d12 ¼ 0.5, “M” is for

case d12 ¼ 0.2 and “S” is for case d12 ¼ 0.1. The suffix number is used to

denote magnetic strength b0.

Case abbreviation Density ratio (rI:rII:rIII) Thickness d12 b0

AL-inf 3:5:1 0.5 ∞
AL-32 3:5:1 0.5 32

AL-8 3:5:1 0.5 8

AM-inf 3:5:1 0.2 ∞
AM-32 3:5:1 0.2 32

AS-inf 3:5:1 0.1 ∞
AS-32 3:5:1 0.1 32

BL-inf 3:2:1 0.5 ∞
BL-32 3:2:1 0.5 32

BL-8 3:2:1 0.5 8

BM-inf 3:2:1 0.2 ∞
BM-32 3:2:1 0.2 32

BS-inf 3:2:1 0.1 ∞
BS-32 3:2:1 0.1 32
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3. Results and discussion

3.1. Wave structures

Before we discuss the RMI of the perturbed interfaces, it is
instructive to examine the complex wave structures that arise
from various nonlinear interactions. According to the initial
setup, the incident shock (IS) generated from the RI propa-
gates radially inwards and interacts with the two DIs. Fig. 2
shows various wave interactions with an x � t diagram
wherein we plot contours of log10ðjVrj þ 1Þ along line
f ¼ arctan 1

2 for both cases. It shows that contact discontinuity
(CD) and expansion waves arising from the RI have no
interaction with the DIs over the duration of the simulation.
For HD (b ¼ ∞) case (Fig. 2(a) and (c)), the IS converging
processes can be summarized as follows: (1) the initially
generated IS interacts with DI1 and the impulse lead to a
radially inward motion of DI1; (2) the transmitted shock (TS)
produced from step 1 interacts with the DI2, resulting in
converging motion of DI2; (2) the reflected shock/rarefaction
(shock for case B, rarefaction for case A) generated in step 2
propagates outward and interacts with DI1, while the reflected
shock (RS) formed after the TS generated from step 2 reflects
at the origin and travels radially outwards interacting first with
DI2 and then with DI1, changing the direction of it's motion
(this latter process is sometimes referred to as ”reshock”).

For the MHD (finite b) cases, the wave structures (Fig. 2(b)
and (d)) are more complicated than the HD ones since more
waves are formed during the primary MHD shock refraction at
the interface, which in turn imply a higher number of shock-
interface interactions. Initially, two incoming shocks are

generated: the incident fast shock (IFS) and incident slow
shock (ISS). For the IFS, the converging processes of MHD
cases are similar to the HD ones except more waves are
generated. For instance, during the IFS-DI1 interaction of case
AL-8, a transmitted fast shock (TFS), a reflected fast shock
(RFS), a transmitted slow shock (TSS) and a reflected slow
shock (RSS) are produced, as seen more clearly in Fig. 3,
which shows the vorticity field near DI1 for two cases with
perturbed interfaces (these slow waves are too weak to be seen
in the x � t diagram in Fig. 2). Unlike the IFS, the ISS has
little influence on DI2 since the waves generated during the
ISS-DI1 interaction are too weak to produce any discernible
interactions, but it shows an obvious impact on the banded
structure which arises from the perturbations on the interfaces.
Since the density in region II of case AL is higher than that of
case BL, the TS travels faster in this region of case BL and
converges to the origin at an earlier time.

3.2. Density and vorticity evolution

The density plots of case AL (t ¼ 0.67) and case BL
(t ¼ 0.51) are shown in Fig. 4. At these times, the fast shocks
have traveled across the two interfaces while the reflected
waves generated from the TFS-DI2 interaction have not yet
interacted with the converging DI1. A visual inspection of the
density images make it apparent that the amplitude of the
perturbations of the MHD case is smaller than that of the HD
case, which suggests that the magnetic field does suppress the
RMI, although not completely. Due to the lack of axisymmetry
of the saddle field, the extent of the suppression varies on the
interface, which leads to the non-axisymmetric growth of the
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Fig. 2. Wave diagram in x�t coordinates of log10ðjVrj þ 1Þ along line f ¼ arctan 1
2. The arrows on the time axis indicate the times at which vorticity plots are

presented in later figures.
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perturbations. It appears that the perturbations are most
diminished at fzp=4 where the field is nearly parallel to the
interface and becomes the largest near region f ¼ 0 where the
field is nearly perpendicular to the layer. We draw attention to
the ”bulge” formed on the CD at f ¼ p/4 under the seed field,
which results from the non-axisymmetry of the ISS. Under the
effect of the seed field, the radial velocity of the ISS is min-
imum at f ¼ p/4, which leads to the formation of a curvature
singularity on the ISS at this point resulting in two reflected
shocks. The high pressure behind these two shocks pushes the

CD out and forms the ”bulge” to balance the pressure [28]. A
stronger field strength results in a more pronounced ”bulge”.

The suppression of the instability is attributed to two
related effects:one is the transport of baroclinically generated
vorticity, created at the interface during the shock-interface
interaction, away from the interface by MHD waves. This is
illustrated by the vorticity distributions shown in Fig. 5 of case
AL-8 at different times. An examination of region fsp=2
shows that the baroclinic vorticity deposited on DI1 during
shock interaction is transported away by the slow waves. The
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Fig. 3. Vorticity contours for case AL after the (a) IS-DI1 and (b) IFS-DI1 interactions at t ¼ 0.254.
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Fig. 4. Density plots of case AL (at t ¼ 0.67) and case BL (at t ¼ 0.51) overlaid with magnetic field lines.
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other suppression mechanism is observed at f ¼ p/4, where
the vorticity remains in the vicinity of the interface, but ac-
cording to Ref. [15], the initial distribution breaks up into
waves traveling parallel and antiparallel to the interface. As
these waves propagate, the induced velocity at a given inter-
face location (and the perturbation growth rate) oscillates in
time.

Fig. 5(a) shows the vorticity plot after the IFS-DI1 inter-
action at t ¼ 0.30. At this point, the ISS has not yet interacted
with DI1. The two fast shocks, TFS and RFS, from the IFS-
DI1 interaction rapidly travel away from DI1, while the two
slow shocks, TSS and RSS, are moving more closely tied to
DI1, nearly co-moving with the interface at f ¼ p/4. The
strength of ISS reaches its maximum at f ¼ p/4 and vanishes
at f ¼ 0. The trajectory of ISS changes only slightly after the
RFS passes and the waves produced during the interaction are
too weak to discern in the plot. At t ¼ 0.57, the ISS-DI1
interaction is in progress and the TFS-DI2 interaction has
occurred (see Fig. 5(b)). Before interacting with DI1, the ISS

is somewhat weakened by the RSS from the IFS-DI1 inter-
action. Unlike the IFS-DI1 interaction, the ISS-DI1 interaction
is a long-term one. In the low f region, the strength of ISS is
low and does not interact strongly with DI1; while near f ¼ p/
4, the ISS is sufficiently strong to distort DI1. In Fig. 5(c), the
reflected TFS from the origin has propagated across DI2 and
causes it to move radially outwards. At this time, the ISS has
completed its interaction with DI1 and the reflected shocks
behind ISS begin to influence DI1. Near f ¼ p/4, a concave-
deformation of the interface forms. The reflected TFS keeps
propagating outwards and interacts with all the slow waves
from DI1. These slow waves are too weak to visibly affect the
TFS. At t ¼ 0.99, the reflected TFS has traveled across the DI1
and becomes distinctly non-axisymmetric after this interac-
tion. Some refracted shocks generated by the perturbations
appear behind the TFS. Along the ray f ¼ p/4, phase inver-
sion of the perturbation amplitude occurs for both DI1 and DI2
interfaces. Also apparent at this time are the formation of
additional transmitted and reflected slow shocks during the
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reshock of DI1 by the outgoing TFS. These perturbed slow
shocks transport the reshock generated vorticity in the same
manner described for the initial shock interaction. Thus the
reshock induced RMI should be similarly mitigated.

Fig. 6 shows the vorticity plots of case BL-8 at different
time. In this case, both DI1 and DI2 are light-to-heavy in-
terfaces, thus, the behavior of DI2 is similar to that of DI1 if
the influence of the ISS-DI1 interaction is not taken into ac-
count. At t ¼ 0.51, the incoming fast waves have interacted
with both DI1 and DI2. The slow shocks attached to each DI
transport the vorticity away at angles where the field is not
tangential to the interface. After the outgoing reflected fast
shock (from the origin) has traversed over all DIs at t ¼ 0.81, a
second generation of slow waves travels with DIs together
with slow waves from the previous interaction.

Fig. 7 plots the evolution of DI1 and DI2 of case A in (f,r)
space. For DI1, after being impacted by the incident shock, the
RMI occurs, and the perturbations grow rapidly for the HD
case while showing partial suppression by the magnetic field
in the MHD case. It shows that the extent of suppression
achieves its maximum in the region around fzp=4, where the
field is locally parallel to the interface, and becomes minimum
around region fz0. In Fig. 7(b), we note that the amplitude of
perturbations decreases after reaching a certain value. This is
due to the effect of the RTI stemming from the continuous
acceleration of the interface as it converges. The effect of RTI
is most evident near region f ¼ p/4, where the phase inversion
happens around t ¼ 0.62. Since DI2 is heavy to light, after its
interaction with incident shock, the phase inversion occurs
immediately due to the generated vorticity (with the opposite
sign of vorticity generated to DI1), then the perturbations grow
driven by RMI, as shown in Fig. 7(d).

3.3. Effect of magnetic field

To quantitatively study the effect of magnetic field on the
growth of amplitude of perturbations, it is convenient to

consider the amplitude of perturbations in different azimuthal
sectors demarcated by different intervals of f. Fig. 8 shows the
evolution of the normalized amplitude h=h0 of DI1 and DI2 in
two sectors for all cases. The results are compared with two
reference amplitude curves: one is from a linear simulation of
cylindrical RMI, the other is the initial growth rate calculated
through Lombardini-Pullin (LP) model [29]. To aid the
quantification of the effect of the magnetic field and depen-
dence on the angle, we denote the sector where f2½0;p=16�
as ”low-f” region and the section where f2½3p=16;p=4� as
”high-f” region. Labels ”a”, ”b”, ”c”, ”d” and ”e” denote
specially chosen time instances for both HD cases, also
approximately coinciding with times for MHD cases, in the
high-f region. Label ”a” represents the time when the IS in-
teracts with DI1, ”b” is the time when the reflected wave from
TS-DI2 interaction hits DI1, ”c” is the time when the reflected
shock from origin interacts with DI1, ”d” is the time when TS-
DI2 interaction happens, and ”e” represents the time when the
reflected shock from origin interacts with DI2. In all cases, it
shows that the amplitude of the perturbations is decreased by
the magnetic field.

Because interface DI1 in case AL, and interfaces DI1 and
DI2 of case BL are light-to-heavy interfaces, the evolutions of
the perturbations appear similar. After time instance ”a” or ”d”,
the amplitude of the perturbation grows rapidly to a peak fol-
lowed by its decrease. This is attributed to the competition
mechanism between RMI and RTI. The initial impulse due to
the shock wave leads to the RMI but as the shock interface
decelerates radially, the RTI manifests itself, driving growth in
the opposite direction. In the same sector, a stronger field
strength leads to a lower peak amplitude. For the same field
strength, the peak amplitude value in the high f region is less
than that in the low f region, since RMI is more highly sup-
pressed where the field is close to parallel to the interface [20].
In addition, the oscillation of the amplitude in high f region
indicates the existence of phase inversion, which is observed in
Fig. 7(b). The small change of the amplitude at ”b” comes from
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Fig. 6. Vorticity plots of case BL-8 at different time: (a) after TFS-DI2 interaction t ¼ 0.51; (b) after the interaction between DI1 and the reflected shock from the

origin t ¼ 0.81. The time shown has been indicated in the x � t wave diagram in Fig. 2.
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the interaction between DI1 and the reflected wave, which turns
out to be the expansion wave for case AL and shock wave for
case BL. Table 2 shows the maximum normalized amplitude of
perturbations on DIs before time slot ”c” or ”e” in the low f

region. It shows that the extent of the suppression of case AL is
smaller than that of case BL, especially for DI1.

The extent of asymmetry is an important factor considered
in ICF. In order to investigate the effect of magnetic field on
the DI asymmetry, the mean radial position of each DI, r is
measured and the asymmetry degree z(r) of interface is
quantified by comparing amplitudes in the four sectors where
f ¼ ½np=16; ðnþ 1Þp=16�, n2½0; 3�. We divide each section
into N (32 in this study) equivalent segments and calculate
standard deviation of mean radial position of corresponding
pieces in all sections. Thus, the asymmetry degree z(r) is the
mean of these N standard deviations normalized by the initial
perturbation amplitude. Fig. 9 compares z(r) for cases AL and
BL with different magnetic field strengths before DI interac-
tion with reflected shocks from origin (reshock). For the HD
cases, the flow is symmetric, thus z(r) ¼ 0 should be satisfied
all the time. In our HD simulations, z(r) ¼ 0 is only approx-
imately true due to a mild asymmetry in the adaptive meshes.
For MHD cases, the initial saddle magnetic field causes the
IFS speed to vary depending on the local field conditions,
breaking the axisymmetry. Thus during the IFS-DI interaction,
z(r) increases rapidly due to the interaction of the asymmetric
IFS with the initially symmetric interface, while the mean

radial position of DI almost remains unchanged. Conse-
quently, the stronger magnetic field is, the larger asymmetry
degree becomes, as indicated in Fig. 9. The degree of asym-
metry is large under strong field strength. In such situations,
ISS-DI interaction becomes strong, resulting in a severe
distortion of the DI, as can be seen in Fig. 5(c).

3.4. Effect of layer thickness

After shock interactions have occurred in the MHD cases,
the perturbation amplitudes are different in each sector due to
the asymmetric RMI suppression induced by the magnetic
field. We introduce another measure of the perturbation
amplitude h defined as the root-mean-square of the perturba-
tion amplitude in each sector. Fig. 10 compares the growth of
relative root-mean-square amplitude of DIs for cases with
different thicknesses. It shows that the magnetic field has a
suppression effect on the perturbation growth for all cases. For
DI1 of case A, the reflected rarefaction wave from DI2 ac-
celerates the perturbation growth, enhancing the RMI. In
Fig. 10(a), this is seen as the change in slope at tz0:1; 0:2; 0:5
for the small, medium and large layer thickness, respectively.
Eventually the perturbation amplitude h reaches a peak and
then decreases due to the dominance of the RTI, which drives
the perturbations towards a phase inversion. We note that the
duration of the RMI phase is positively correlated to the layer
thickness, i.e., as d12 increases the peak amplitude and
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subsequent decrease in amplitude occurs later in time. The
competition between the RTI and the RMI phases results in a
non-monotonic behavior, i.e., the peak amplitude is reached by
the layer of medium thickness. When d12 is small, the
amplitude growth reinforcement due to the reflected rarefac-
tion driven RMI from DI2 is also small. Although the extent of
this RMI reinforcement for AL cases is stronger than that of
AM cases, the duration over which RMI dominates RTI is
reduced (since the RMI reinforcement happens), and this
eventually makes the maximum amplitude of AL cases smaller
than that of AM cases (see Table 3).

For finite b, the RMI growth is suppressed due to the
magnetic field and the suppression mechanisms discussed

above. The effect of the layer thickness follows the same trend
as in the HD cases, i.e., the medium layer thickness exhibits
the largest growth. For DI2 of case A in HD, the shock in-
teracts with a heavy-to-light interface and leads to a phase
inversion of the amplitude. The second interface being closer
to the origin experiences a stronger shock (due to convergence
effects) for the larger layer thickness cases. In Fig. 10(b), it is
seen that the medium and large layer thickness cases show a
similar growth in DI2 perturbation amplitude until tz0:28,
while the small layer case exhibits substantially small ampli-
tude. The largest layer width case experiences the highest
early DI2 perturbation growth rate, but quickly experiences a
reshock at tz0:28 (the reshock is seen as a sharp decrease in
the amplitude in these plots). Consequently, the largest overall
growth is experienced for the medium layer interface, as
shown in Table 3. A similar behavior occurs for DI2 in the
finite b case as seen in Fig. 10(b).

For interface DI1 of case B in HD, the reflected wave from
DI2 is a shock that interacts with DI1 as if DI1 is a heavy-to-
light interface, and weakens the RMI. Overall, the thickness

Fig. 8. Evolution of amplitude normalized by the initial amplitude of DI1 and DI2 for cases AL and BL at different time: (a) when IS interacts with DI1; (b) when

the reflected wave from TS-DI2 interaction hits DI1; (c) when the reflected shock from the origin interacts with DI1; (d) of TS-DI2 interaction; (e) Time when the

reflected shock from the origin interacts with DI2. For comparison, the figures show the amplitudes predicted by the linear impulse models for both interfaces.

Table 2

Maximum amplitude of perturbations in low f region, i.e..f2½0;p=16�
AL-inf AL-32 AL-8 BL-inf BL-32 BL-8

DI1 7.2 3.4 2.4 3.7 1.9 1.4

DI2 3.0 1.6 1.6 2.9 2.1 1.6
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d12 shows a positive correlation with the weakened strength
(see Fig. 10(c)). Although the extent of this RMI for BM
cases is weaker than that for BL cases, the duration over
which RMI dominates RTI is increased (since the RMI
weakening happens), thus the maximum amplitude of BM
cases is smaller than that of BL cases. For case BL-32 (finite
b), since amplitude achieves maximum before the RMI
dominance abates, the maximum amplitude of case BL-32
will be greater than that of case BM-32. For case B, DI2 is
a light-to-heavy interface and upon interaction with the shock,
shows a positive growth of the interface perturbations. As the
layer width increases, the second interface is closer to the
origin, and experiences RTI more rapidly for higher layer
thickness cases (See Fig. 10(d)). The sharp change in
amplitude is due to reshock from the shock reflection off the
origin.

4. Conclusions

The interaction between a converging cylindrical shock
and double interfaces in the presence of a saddle-topology
seed magnetic field was numerically investigated. Two
cases (light-heavy-light and light-heavy-heaviest) with
various field strengths and layer thicknesses were computed
and the results showed that the magnetic field did suppress
the RMI, while the extent of the suppression varied with f

and led to azimuthal symmetry breaking of the DIs. The
growth of the amplitude of perturbations was affected by both
RMI and RTI. For light-to-heavy interfaces, the amplitude
increased when RMI dominated over RTI and decreased
when RTI dominated over RMI. In the region where the
interface was nearly parallel to the magnetic field, the per-
turbations oscillated due to phase inversion. For heavy-to-
light interfaces, amplitudes were increased subsequently
after the RMI induced perturbation phase inversion. In
addition, for a given field strength, the extent of suppression
of case B (both interfaces were light-to-heavy) was larger
than that of case A (light-to-heavy for the first interface and
heavy-to-light for the second). The saddle field increased the
asymmetry degree of the interface by distorting it through the
ISS-DI interaction. The effect varying the layer thickness was
also examined and the case of medium layer thickness
generally experienced a larger growth compared with smaller
or larger layer thickness cases due to the competing effects of
stronger initial shock interactions, as the inner density inter-
face was moved closer to the origin, reflected wave driven
RMI, and RTI onset.
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